

Planetary boundaries and livestock

Robyn Alders AO

- 1. Development Policy Centre & Institute for Climate, Energy and Disaster Solutions, ANU, Australia
- 2. Global Health Programme, Chatham House, UK
- 3. Kyeema Foundation, Mozambique and Australia
- 4. Dept of Pathobiology and Population, Royal Veterinary College, London, UK

2022 GASL South Asia Conference, 23 August 2022

My dual passions, commitment to family farming and a possible conflict of interest

Village chickens and their owners

Merino sheep and Australian farmers

- GASL South Asia Conference Organizing Committee, especially Drs Nitya Ghotge and Ilse Köhler-Rollefson
- FAO, ILRI
- Small-scale and family farmers and producers in the Indo-Pacific
- Kyeema Foundation colleagues

Our challenge

How do we deliver ethical, safe and sustainable livestock production

Presentation outline

- **1. Introduction to Planetary boundaries**
- 2. Planetary boundaries and livestock
 - **B.** Sustainable & circular bioeconomies
- 4. Key recommendations

Planetary Boundaries: an introduction

Planetary boundaries are

- A communication device for conceptualising a Safe Operating Space for Humanity
- Help to focus attention and define overarching goals for the livestock sector
- Consist of nine Earth system metrics:
 - biosphere integrity
 - biogeochemical flows
 - ocean acidification
 - land-use change
 - global freshwater use
 - stratospheric ozone depletion
 - atmospheric aerosol loading
 - chemical pollution
 - novel entities

Source: Steffen et al. (2015)

Planetary Boundaries and food systems

Beyond zone of uncertainty (high risk)

In zone of uncertainty (increasing risk)

An estimate of the global food system's transgression of planetary boundaries

- safe operating space (green) provides an estimate of the food-related share of the planetary boundaries
- zone of uncertainty (yellow) defines dangerous risk
- high-risk zone (red) indicates where production has exceeded the assessed uncertainty range

Boundary (i.e. Earth	Positive examples (i.e. relieving	Negative examples (i.e. placing
system process)	strain on planetary boundaries)	strain on planetary boundaries)
1. Biosphere integrity	Sustainable, safe harvesting of animal species well adapted to local environments	Animal-source food produced by a limited number of species and breeds at the global level
Indicators:	Adaptation of welfare-friendly	Feed demands for intensively raised
Extinctions per million species-years	ivestock production practices that enhance plant and animal biodiversity and ecosystem function	animals requiring the expansion of livestock and crop production into new landscapes, including forests
Biodiversity Intactness Index		 and wetlands → loss of biodiversity → increased risk of pathogen spillover events from wild animal and bird reservoirs to domestic animals and humans

(Alders et al., 2021a)

Agrobiodiversity loss

The 9 million Holstein dairy cows in the US
 <u>descended from 2 sires</u>

- female effective population size < 50

Commercial chicken genetics lack diversity and are controlled by 4 major companies for both broilers and layers

Biodiversity loss

- Biodiversity reflects overall environmental health
- Diminishing numbers of key species
- Extinction of pollinator bees would severely affect food security and destroy the delicate balance of the Earth's ecosystem
- Essential to encourage livestock production systems that promote biodiversity

Sociocultural & religious diversity

A. Chiapas Sheep breed cared for by Tzotzil shepherdesses in Mexico; prohibited to kill them B. Mayan Tzotzil weaver transforming wool into traditional garments

Boundary	Positive examples	Negative examples
2. Biogeochemical	Integrated aquaculture-agriculture closed circular systems	Excessive use of nitrogen fertiliser to grow feed for aquatic and
Indicators:	Appropriate use of manure for organic fertiliser	spillover/leakage of excess fertiliser into water ways
Amount of nitrogen removed from the atmosphere for human use	Maintaining wetlands as part of an integrated aquaculture–agriculture closed circular system and ecological balance of ecosystems	Inefficient and improper management of livestock manure and aquaculture waste generated by intensive production systems
Quantity of phosphorus flowing into the oceans		

Boundary	Positive examples	Negative examples
4. Land use change Indicator:	Introduction of agro- ecological/regenerative livestock and crop production systems that reduce net greenhouse gas (GHG) emissions and improve overall soil health	Clearing forests for livestock production and coastal mangrove forests for coastal shrimp farming for human and companion animal food chains
Area of forested land as percentage of original forest cover	Greater yields per hectare into the human food chain from livestock in high- income countries – both by weight and nutrient yields – through enhancing animal genetics and husbandry practices and reducing pre-consumer losses, i.e. eating more of the animal, including offal \rightarrow less land clearing and fewer flow-on effects	Arable land, particularly near cities, being built on for housing or industry and becoming urban Poor land/agricultural husbandry practices leading to land degradation, fertility loss

(Alders et al., 2021a)

Efficient use of nutrients (i)

Nutrient distribution in chicken carcases

Distribution of **iron** amongst a whole chicken carcass

Distribution of nutrients across a chicken carcass								
	Fe (mg)	Zn (mg)	Vitamin B12 (u̯g)	Vitamin A (IU)	Folate (ug)	Thiamine (mg)	Protein (g)	Energy (<mark>kj</mark>)
Back	10.7	11.5	2.9	5.0	2.5	9.2	9.3	18.5
Breast	20.1	17.4	9.4	4.0	4.0	27.1	33.1	23.9
Drumstick	9.1	19.2	7.0	1.0	1.4	17.0	13.6	10.6
Thigh	12.7	19.4	11.8	2.6	2.1	21.6	18.1	21.1
Wing	5.0	10.5	2.7	0.6	2.8	10.2	11.7	11.9
Neck	6.0	4.7	0.8	1.2	0.6	2.3	2.6	4.8
Giblet	31.7	14.4	62.9	84.7	69.6	7.5	5.7	3.4
Feet	4.8	2.9	2.5	0.9	16.8	5.0	6.0	5.8

Chan, et al. 2017. What's in a Chicken? Comparing the nutrient value, potential to meet nutrient requirements and health-cost effectiveness of whole and frozen chickens. BVSc Honours Dissertation, University of Sydney.

Efficient use of nutrients (ii)

Nutrient distribution in chicken carcases

Efficient use of nutrients (iii)

Boundary	Positive examples	Negative examples
5. Global fresh water use	Selection of animals for heat tolerance and efficient water use	Increased water consumption by animals due to increasing numbers of domestic aquatic and terrestrial animals
Indicator: Maximum amount of consumptive blue water use (km ³ per year)		Raising animals poorly adapted to local agro-ecological conditions

Boundary	Positive examples	Negative examples
6. Stratospheric ozone depletion	None	Skin cancers in animals expected to increase until 2070, in association with ozone layer depletion due to human-made
Indicator:		ozone-depleting substances
Concentration of ozone		

Boundary	Positive examples	Negative examples
7. Atmospheric aerosol loading	Silvopasture production systems that reduce ground-level wind speed and enhance soil cover	Overgrazing, leading to loss of vegetative cover and dust generation by wind
Indicators: Overall particulate concentration in the atmosphere, on a regional basis	Production systems that conserve soil moisture, reducing the impact of bushfires	

AGFORWARD Agroforestry for Europe

Source: <u>https://www.agforward.eu/documents/WP2_PT_Montado_system_description.pdf</u>

Australian National University
Oniversity

Boundary	Positive examples	Negative examples
8. Chemical pollution	Breeding to reduce livestock pests and diseases (flystrike susceptibility/intestinal worms) and hence reduce pesticide/ drench use	Heavy metal pollution affects animal health and the safety of aquatic and terrestrial animal- source foods
Amount emitted, or concentration of persistent organic pollutants, plastics, endocrine disrupters, heavy metals and nuclear waste in the global environment	On-farm biosecurity measures and use of vaccines that reduce the need for veterinary medicines and pesticides (e.g. grazing management to reduce environmental worm burdens, isolating new stock to manage the risk of lice and ticks, selection of specific-pathogen-free seeds for aquaculture) Use of organic fertilisers and soil amendments on land used to grow fodder	Antibiotic pollution of the environment including water ways

Australian National University Examples of the range of positive and negative effects of aquatic and terrestrial animals on Earth processes			
Boundary	Positive examples	Negative examples	
9. Climate change	Well-managed perennial pasture and silvopasture can sequester carbon, reducing atmospheric levels; good	Emissions of methane and nitrous oxide and the loss of organic carbon in the soil and biomass	
Indicators: Atmospheric carbon	animal products can reduce GHG emissions per unit of production	raising and animal feed production and supply lines	
dioxide and methane concentrations		Energy consumption associated with heating and cooling intensive rearing enterprises	
Change in radiative			
forcing		Transport of feed in and animals out for slaughter	
		Decreased animal welfare due to increased heat stress, pathogen circulation, droughts and bushfires	

Low emission transport

Supporting crop production with draught power, transport, and manure

Draught horses used in logging in Germany have lower GHG emissions than mechanized fossil fuel tractors (Engel et al., 2012)

Photo credit: Fallou Gueye, FAO, 2020

Regenerative natural fibre production

Natural fibre •Biodegradable •Fire resistant <u>Regenerative</u> •Carbon sequestration •Perennial pastures •Increased biodiversity

World Bank et al. 2021

"Food systems must change rapidly and fundamentally in the coming decades to become more regenerative, resilient, and inclusive, while increasing food supply for an additional 2 billion people by 2050"

"Today's food systems generate \$12 trillion in hidden social, economic, and environmental costs"

Proposes 5 imperatives needed to optimize public spending and mobilize private capital for a global food system transformation, including intersectoral collaboration Food Finance Architecture

> FINANCING A HEALTHY, EQUITABLE & SUSTAINABLE FOOD SYSTEM EXECUTIVE SUMMARY

Sustainable and circular bioeconomies

Circular economies: two examples

clased-loop and open-loop recycling systems

Source: Robyn Alders, 2022

Ecosystem services = multiple benefits to humans (e.g., food, clean water, shelter, and raw materials for our basic needs) provided by healthy ecosystems

Extensively raised livestock

- frequently integral to provision of ecosystem services
- essential to many agroecosystems
- contribute to circular food and fibre systems

Roles include:

- transforming feed inedible by humans into nutritious foods

- **useful products** such as pharmaceuticals and companion animal feed, fuel (through manure), and transport
- enhancing ecosystem health through grazing, browsing, trampling, and the production of dung and urine
- **shifting locations** allowing them to respond to fluctuations in resource availability and weather patterns

Nature-based production

Extractive

1982

REGENERATIVE AGRICULTURE SHIFTS THE PARADIGM

Regenerative

2019

↑ Carbon sequestration
 ↑ Water retention
 ↑ Soil health & nutrient profie

As livestock specialists, we have a responsibility to encourage practices that safeguard global health security and the health of the planet through:

- Evidence-based debates on sustainable human and animal nutrition and appropriate welfare
- Use of food for people and feed for animals that are ecologically, economically and socially sustainable
- Land management practices involving animals that enhance soil health and biodiversity, employ principles of regenerative, climate-resilient livestock production
- Value food according to its natural nutrient density in addition to weight and/or volume, value nutrients and enable their recycling
- **Restructure human healthcare services** to place a higher value on the contributions of agriculture and livestock producers to preventive medicine

Bibliography

• TO BE COMPLETED

- Alders, R.G., Chadag, M.V., Debnath, N.C., Howden, M., Meza, F., Schipp, M., Swai, E.S. and Wingett, K. 2021a. Planetary boundaries and Veterinary Services. Rev.Sci.Tech.Off.Int.Epiz. 40(2):439-453. <u>https://doi.org/10.20506/rst.40.2.3236</u>
- Chan, et al. 2017. What's in a Chicken? Comparing the nutrient value, potential to meet nutrient requirements and health-cost effectiveness of whole and frozen chickens. BVSc Honours Dissertation, University of Sydney.
- Rockström, J., et al. 2009. Planetary boundaries:exploring the safe operating space for humanity. Ecology and Society 14(2): 32. <u>http://www.ecologyandsociety.org/vol14/iss2/art32/</u>
- Steffen, W., et al. 2015. Planetary boundaries: Guiding human development on a changing planet. J. Science 347(6223):1259855. <u>https://www.science.org/doi/abs/10.1126/science.1259855</u>

Thank you for your time

No one individual, discipline or sector can deliver ethical, economically and ecologically sustainable livestock production. **Together, we have to!**

- Comments and queries welcome
- robyn.alders@anu.edu.au

ONE HEALTH, ZERO HUNGER

Robyn Alders, Osman Dar, Richard Kock, and Francesco Rampa Chatham House

FIGURE 2.1 SUSTAINABLE DEVELOPMENT GOAL 2 (ZERO HUNGER) AND THE EIGHT TARGETS FOR ASSESSING PROGRESS

Available: https://www.globalhungerindex.org/issues-in-focus/2020.html